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Charge oscillations and many-body effects in bundles of like-charged rods
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We study charge correlations in bundles of like-charged rods that attract each other via counterion-mediated
interactions, using a Debye-kkel approach. We first show that the approach can predict oscillatory charge
correlations in electrolyte solutions once the nonzero ion size is taken into account. We then apply the
approach to bundles of rods, and find that the charge correlation function exhibits oscillatory decay due to
many-body effective interactions among the rdd1063-651X98)12511-4

PACS numbegps): 61.20.Qg, 61.25.Hq, 87.15.Da

[. INTRODUCTION sation allows the counterion to exist in two states: free or
condensed. Condensed counterions modify the local charge
Like-charged stiff polyelectrolytes can attract each othewhile free counterions are treated within Debyéeekiel
in solution to form dense bundles when multivalent salts areheory. There is chemical equilibrium between free and con-
added[1,2]. Recent simulation§3,4] and theorie§5,3,6,7  densed counterions; this leads to fluctuations in the charge
of charged rods suggest that the mechanism of the shortlensity along the rods. Our approach to this model is to use
ranged attraction is similar to the van der Waals attractionone-dimensional Debye-l¢kel theory to treat the charge
fluctuations in the density of condensed counterions alon@uctuations along the rod$]. The one-dimensional Debye-
the axes of the rods lead to charge fluctuations that becomaiickel system on each rod is coupled via a three-
correlated when the rods are sufficiently close to each othetiimensional Debye-Hikel system of free counterions and
In addition, rods are affected by a long-ranged repulsion dugdded salt ions to the one-dimensional Debyekdli sys-
to the fact that they carry the same sign of charge. If theems on the other rods in the bundle. We have shown that

interactions were pairwise additive, this would imply that the,;g approach describes the interaction between two rods at a

bundle size would be limited by the long-ranged repulsion.,,antitative level when compared to simulatidied. Here,
However, these interactions are not pairwise addifi/&].

how that thi h predicscillatory d f th
Explicit calculation[8] of the interactions iN-rod bundles e show that this approach pred rlatory decay ot the

shows that electrostatics prefer the bundle size to be inﬁniteimer_rOd charge correlations. However, we must extend it to
preter e capture the proper oscillatorintrarod correlations. Re-
At very low temperatures, this is not surprising because the

system orders into an ionic crysfd], and electrostatics do Cently, Lee and Fish4d 0] generalized Debye-Holkel theory

not limit the size of an ionic crystal. At the temperatures welO capture oscillatory charge correlations in electrolyte solu-

have studied, however, the counterions are not ordered perti'-ons' Their approach, however, gannot b‘? appligd readily to
odically, so it is less clear why electrostatics should prefer ai® case of a bundle of rods with one-dimensional charge
infinite bundle size. By studying charge correlations in thefluctuations. We have therefore adopted an alternate ap-
bundle, we can gain insight into the result that the preferred@roach that is more amenable to rods. In Sec. Il we introduce
bundle size is infinite. Another benefit is that we can makehe approach and demonstrate its validity by applying it to an
connection to experiments: charge correlations can be me&lectrolyte solution consisting of positively and negatively
sured by x-ray scattering from the counterions. charged spheres. In qualitative agreement with recent results
In this paper we present a formulation that allows calcu-of Lee and Fishef10], we find that the charge correlations
lation of charge correlations in a bundle of like-charged rodsare oscillatory at sufficiently high densities within an expo-
with condensed counterions. We find that both the intrarodhentially decaying envelope. At very high densities, we also
and inter-rod charge correlations are oscillatory within anobserve a transition to an ionic crystal, although the theory is
exponentially decaying envelope. These oscillations can beertainly not accurate by that point.
viewed as a precursor to the ionic crystal; as the temperature In Sec. lll we apply the same approach to a bundle of rods
is lowered, the exponential decay length diverges at the trarwith charge fluctuations. The specific system we have in
sition to an ionic crystal. We find that the oscillations extendmind is a polyelectrolyte with condensed counterions
over several rods, which explains why many-body effects ar¢11,12, where the charge fluctuations originate from density
so important in this system. fluctuations in the condensed counterions along the axes of
In order to calculate the attractive interactions betweerthe rods[13]. In the bundle, we consider both inter-rod and
rods and the corresponding charge correlations, we use antrarod charge correlations, and show that the correlations
extension of Debye-Hkel theory. It is well known that are again oscillatory with an exponential decay. The oscilla-
standard Debye-Hikel theory fails to describe the attrac- tions are a precursor to the ionic crystal at low temperatures,
tions necessary to the formation of bundles. In fact, even the/here the exponential decay length diverges. We also show
nonlinear Poisson-Boltzmann equation predicts repulsionthat pairwise additivity of effective two-rod interactiofrae-
for multivalent as well as monovalent counterig8$ How- diated by the counteriohdeads to monotonic decay of the
ever, the Manning-Oosawa approach to counterion condennter-rod charge correlation function. Thus many-body inter-
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actions must be retained in order for the inter-rod correlawhere

tions to be oscillatory. ) 5
k“(k)=kpg(k), (6)

whereg (k) = 3(sirkd—kdcokd)/(kd)® is the form factor of a
sphere of diameted. We will refer to this as extended
The conventional Debye-Hitel approach predicts mono- Debye-Hickel theory.

Il. CHARGE CORRELATIONS IN AN ELECTROLYTE
SOLUTION

tonic decay of charge correlations. However, Lee and Fisher To examine charge correlations, we apply an electrostatic
[10] have proposed a generalization of Debyeckil theory  potential —ih(r) that is conjugate to the charge density
that predicts oscillatory correlations at high densities, by calp(r), so that the free energy is
culating the response to spatially varying fluctuations in the
charge density. Here, we develop the momentum-space Frhl= —I < F{f 3 >

. . . =—In{ e d°rp(r)h(r)|). 7
counterpart to their approach and show that it yields qualita- AFLN] H! p(NH(N) ™
tively similar results. We start with the restricted primitive ) ) )
model(RPM) of hard spheres of diametdr We assume that Then the Fourier transform of the charge correlation function
there areN spheres carrying chargge andN spheres carry- 'S
ing charge—qe. To calculate the free energy of the system,

: - / 9°F[h]
we define local number densities of the positively and nega- G(K)=(p(K)p(k))=— _ 8
tively charged spheres as follows: (=(pllp(k)) ah(k)ah(—=k) ®
A N The resulting expression within the extended Debyekdl
n+(r)=2 S(r—riy), approach is
1+
nok?g(k
. Gk = K9 ©
n_(nN=2 &r—r_), (1) K2+ k2(K)
~
o with x?(k) given by Eq.(6). Note that in the limit of point
and the local charge density is particles[d—0 or g(k)—1], the expression reduces to the
R . Fourier transform of the usual Debye-ekel prediction,
p(r)=an.(r)—qgn_(r). (2 which decays monotonically with distance. Note also that the

expression Eq(9) automatically satisfies both the charge
neutrality zero moment condition and the Stillinger-Lovett
second moment conditidri6]. This can be seen by expand-

BH lZE/BJ d3rf dsr,p(r)p(r’) &) ing the expression for smali[10]:
e “ !
2 r—r’
| G(k)=(ekgT/4mq?e?)k?+ O(k?). (10

The electrostatic Hamiltonian is

where /g=¢e?/ekgT is the Bjerrum length. Hereg is the . . .
dielectric constant of the solvent. There is also a single par- !N Order to analyze the asymptotic long-distance behavior

ticle HamiltonianH, that ensures that ions are correlated®’ the charge correlation function, we find the péig of
into a sphere of diameter. This is infinite for points outside C(K) that is closest to the origin in the complkxplane. For
the sphere and zero for points inside the sphere. We nowmall values ok=«pd, we find that the charge correlations
introduce the Hubbard-Stratanovich transformation to redecay monotonically, but for>xy, we obtain oscillatory
place the two-body interaction, EB), with a one-body in- decay. Our estimate of the Kirkwood value is

teraction of the charge in an effective field(r), and use the o ~2 06 (11)
Gaussian approximation to obtain the free energy. The K e

Gaussign approximatipn corregponds to Debyekdl pjg jg substantially larger than the predictions of other ap-
theory in that the effective potential due to all the other par- roacheq10], which lie in the range 1:0x,<1.3. The be-
ticles is assumed to be weak compared to the thermal energy, ... Ko éls a function of= rpd Howléver. i.s qualita-

The resulting free energy density fpint particlesis ex- ey identical to that predicted by Lee and Fisfif]. We
actly the Debye-Hekel limiting law: have plotted the results in Fig. 1, which should be compared
to Fig. 1 of Ref.[10]. For x>xk, the charge correlation
function oscillates within an exponentially decaying enve-
lope. The real part oky, which controls the wavelength of
oscillations, is shown as a solid line, while the imaginary
part, which controls the decay, is a dotted line. Asn-
creases, the wavelength of the oscillation decreases and the
decay length increases. At=xy, the imaginary part van-
ishes and the decay length diverges, signalling the onset of

10 d% [ 200\ k3K crystallization. Our estimate of the onsebdg=19.1, which
IBFeI:_j inl 1+ ) — , (5) s also outside the expected range of<2x§<17.7 obtained

2 (277)3[ k? k2 by other method§10]. We have neglected ion clustering, so

BF o= — k31127, (4)

where K%=417/Bq2n0 is the Debye screening parameter
that depends on the total number density of iogs For
spheres of diameted, the electrostatic contribution to the
free energy(per unit volume is given within the same ap-
proach[15] by
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L e ] Following the same approach as in the preceding section, we
Fo \ - introduce an electrostatic potentialih(r) that is conjugate
5 to the charge density(r), so that the free energy is
. E N M
: f[hi<s>]=—ln<exp{—i2 > qj<s>hj<s>]>. (13
L i j=1s=1
kod 3r
Fod Again, we make the Hubbard-Stratanovich transformation
2§ and truncate at Gaussian levid,8]. This corresponds to
Loi treating the one-dimensional charge fluctuations on each rod
107 within Debye-Hickel theory. The connected charge correla-
L tion function is then given by
0!
0 Gij(s,s")=(ai(s)q;(s")) —(ai(s)){a;(s"))
_ 7 Fhi(s)]
FIG. 1. The leading polk, for an electrolyte solution of spheres ah;(s)dh;(s) {h(s)}=0
of diameterd, as a function of the dimensionless quantity
= kpd. The behavior is qualitatively the same as predicted by Lee =Qj Ys,8"), (14

and Fishef10]. The real part ok, (solid line) characterizes oscil-

lations in the charge correlation function, while the imaginary partwhere Q is a block matrix whose matrix elemefg; is a
(dashed ling controls the decay. Atk , marked by the dotted ver- submatrix defined by

tical line on the left, the correlation function becomes oscillatory.

At xyx, marked by the vertical dotted line on the right, the system L /g
crystallizes. Note that our figure looks somewhat different from the Qij(s,8")=A"76 sy + W (15
ijtls—

one in Ref.[12] because we have only plotted the leading pole,
while Lee and Fisher have also sometimes plotted the subleadi

n . . . ) .
pole. \%lhere Rjj is the separation between rodandj. As in our

previous calculation$g], the quantityA =Z?f is the vari-

) ] ) ] ance in the monomeric charge, wheteis the counterion

the theory is certainly not valid at such high valuesxof \gjency andf, is the fraction of condensed counterions per

However, it is reassuring that our approximations lead Gyonomer. Note that charges at different sites are uncorre-

qualitatively correct behavior. , lated in the absence of electrostatic interactioBg(s,s’)
There are several possible reasons for the discrepancy be-, 8, 8s¢ for /=0 [17]. Once electrostatic interactions

tween earlier results and our numerical predictionsXer  are turned on, however, charges on different sites are corre-

andxy . Perhaps the most important one is that we do not Culq i the electrostatic interactiof / VRZ +|s—s' 2.
off the electrostatic interactions at length scales inside the The expression for the charge correllajuion function, Eq

sphere. This can be done in an approximate way by mtroduc(-ls), could be evaluated numerically for a given rod length

ing a high wave-vector cutoff ak=n/d in the integral in and lattice spacing. In order to obtain analytic expressions

Ea. (5), butl_thet rgzsgl_tmg expressmrg tf@(k)twnlbih_en be for the charge correlations, however, it is useful to take the
more complicated. Since we are not trying to obtain a Quang,, yinum |imit along thez direction. The straightforward

el accurate descrpton of e SecoNte e Wl ol of replacing th sums overands by ntarals and e
develg an ap roach that can be ene.ralized t’o 2 bundle onecker delta functiod;y by the Dirac delta function in
P bp 9 g.(15) is analogous to the point-particle limit in the Debye-

rods. The main point of this section is that we can Capturﬁﬂﬂckel treatment of an electrolyte solution, and neglects im-

22?1”;22r}s/iz(;hiir‘gtﬁeci(())rrzgl?/'i{:?ﬁe?grrtr?lg]c%)(lrﬂ;o account theportant local correlations. We therefore retain the rodlike

structure of the monomer by introducing the one-

dimensional form factog(s,s’)=0(|s—s’|—d)/d whered

is the size of the condensed counteripb8]. This is directly

analogous to the sphere form factor that appears in(&g.

Once we have allowed for this short length-scale structure,
We consider a model oN parallel rods of length. ~ we take the continuum limit os and obtain

aligned in thez direction, organized on a square lattice of

spacinga. The counterions have diametgr Each rod con- Gii(s,s')= f"ds,, (s,8")07L(s".s") (16)

sists of M cylindrical monomers of lengthh=L/M. Each e 5 hemem

monomers on rodj carries a random chargg(s), in units

of the elementary charge The electrostatic interactions are where

Ill. CHARGE CORRELATIONS IN A BUNDLE
OF POLYELECTROLYTE RODS

[t g(s,s")
N M , B N—A—1g. ’ / (R A
BH= E/BZ z qi(S)Qj(S ) (12 Qu(S,S )=A 5” o6(s,s )+/Bfo ds \/W

27 @ ns)—ri(s)| 17)
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STy T T T T T part of kg is the inverse of the exponential decay length of

i i 1 the correlation function; this vanishesxat xyx=>5.4, signal-
ling the onset of long-range ordgt9].

Comparing Fig. 2 to Fig. 1, we see that the behavior is
qualitatively different at smalk. In the d=3 systemkg is
purely imaginary and correlations decay monotonically at
small x. One might also expect correlations to decay mono-
tonically in thed=1 case for smalk (high temperatures or
low charge densitigs To elucidate the origin of this differ-
ence between thd=1 andd=3 cases, we have expanded
the Fourier transform of Eq20) in powers of the Manning
parameteg=/g/b (recall thatx=Z/&):

k d

G(z,2')=Aé S L \sgai 22"
2,2 )= Tia—— - ,
“ Jlz=z]?+p? 6 4p?
(21
FIG. 2. The leading pol&, for charge correlations along a

single rod, as a function of=Z /¢, where¢=/4/b is the Man-  whereK(x) is the complete elliptic integral of the first kind.
ning parameter and=2 is the counterion valency. We have as-  According to the first few terms of the perturbation ex-
sumedb=1.7 Aandd=4.2 A. The real part ok, (solid) controls  pansion, the charge correlations should decay algebraically,
the oscillations and the imaginary part kf (dashedl controls the a5 14/z—z’, instead of exponentially, as predicted by the
decay of the charge correlations. The onset of counterion condeny|| expression as shown in Fig. 2. If we take only the first
sation is atc= 2 and is marked by the vertical dotted line on the o terms of the expansion, consistent with smali values of
I_eft. The ons_et of crystallization is & and is marked by the dotted x, we find a monotonic decay from below, similar to the
line on the right. result for d=3. However, the variance in the monomeric
charge,A, is related to the amount of counterion condensa-
tion by A=Z?f., where f. is the fraction of condensed
counterions per monomer. We firlki=0 for x<xc, where

= dk, Xc=+/Z is the counterion condensation threshold; this is

Gijj(s,s')= %coskz(s—s’)gﬁl(kz), (18 identical to Manning’s resul{11,17. Therefore G(z,z’)

o =0 for x<x¢. For x=xc, we find that the perturbation
expansion diverges, so E1) is not useful. This explains
why the one-dimensional case is so different from the three-

Qii(kp)=A"1g7L(k,) &; + 2£Ko(K,Ry)), (199  dimensional electrolyte solution: below , there are no con-
densed counterions so the charge is uniformly negative and
where the dimensionless paramefer/ 5 /b is the Manning completely correlatedkp=0). Once some fraction of coun-
parameter,g(k,) = sink,d/k,d is the Fourier transform of terions have condensed*xc), they repel each other and
g(2), andKy(x) is the zeroth-order modified Bessel function the correlation function exhibits oscillatory decay Kge
of the second kind. In the case of two monomers on the sam#0).
rod, wherei =j, we setR;; =b to prevent a divergence when  When two rods are brought together, the correlations be-
s=g’, tween charges on a rod depend on the separation between the
Given the general form of the correlation function in Eq. two rods. To study these correlations, we consider two par-
(18), we can now examine its behavior in various limits. Weallel rods separated by a distan& and studyG,y(R,z
first consider charge correlations along the length of a single-z'), the correlation between a monomerzabn one rod
isolated rod. In that limit, the lattice spacirgdiverges, so  with a monomer ar’ on thesamerod. As before, we exam-
thatR;;— in Eq. (19) unlessi=j, and Eq.(18) reduces to ine the Fourier transform in thedirection

In the limit L—, we can introduce the Fourier transform in
the z direction:

where

G (k) =A"1g 7 (k,) +2¢Ko(k;b). (20 G11(Rk)=A"1g (k) +2¢Ko(k,b)
To obtain the asymptotic largebehavior of the correlation 3 [2Ko(k,R)]? 22
function, we extract the polkey of G(k,) that lies closest to A~ 1g (k) + 2K o(K,b) |

the origin in the complek, plane. This is plotted in Fig. 2 as

a function ofx=2Z&. As in the three-dimensional case, For large separatiors this correlation function exhibits os-
increases as the temperature is lowered or the charge densftijlatory decay. The positiork, of the pole of G;4(R,k,)
along the rod increases. In our numerical calculations, welosest to the origin in the compléy plane is plotted in Fig.
have chosen parameters consistent with our previous as a function ob/R, whereR is the inter-rod spacing. For
work{6,8] Z=2,b=1.7 A, andd=4.2 A. The real part of this figure, we have choser=Z\/é=4.087. In the limitR

ko is shown as a solid curve, and the imaginary part as a»=, kg approaches its single-rod value. AsR increases,
dotted curve. The real part controls the wavelength of thénowever, the real part ok, increases, showing that the
oscillations in the charge correlation function; thus the oscilawavelength of the oscillation decreases. In addition, the
lation wavelength decreases msncreases. The imaginary imaginary part ofk, decreases, indicating that the correla-
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FIG. 3. The leading pold, for charge correlations along the ~ FIG. 4. The charge correlation functiddiamonds in the xy
axis of one rod, as a function of the distariR@etween the rod and Plane for a square bundle of 832 rods as a function ofr,

a second rod, in units of the monomer lengthHere, we have ~ .|, in units of the lattice spacing, atx=Z\£=4.087 andA
chosenx:Z\/§24.087 andA=1.761. We have plotted the real =1.761. The solid line is to guide the eye. Note that adjacent rods
(solid) and imaginary(dashedl parts ofk, as a function ofb/R. are anticorrelated and that the correlation function extends over

Whenb/R—0, our result approaches the single-rod limit. When theMany (@pproximately 12 rods. The charge correlation function
two rods are extremely close together at a spaglipgmarked by within the truncatedpz_ilr_mse-addltl\_/ée theory is also shown as a
the vertical dotted ling the charges crystallize. dotted line. Note that it is monotonic.

! _ !
tions in thez direction grow longer ranged as the spacing G(r,=ry,s=s’)

between the rods decreases. When the two rods are ex- " e e oyt
tremely close together d/R~1, the imaginary part van- - EZ f dk; cogky(s=s")Hk, -(r, ri)],
ishes, suggesting the onset of long-range order irz thieec- NiT J-w 27 A71g71(k,) +28Ko(K, k) )
tion. At this distance, however, effects that we have (24)
neglected, such as hard-core interactions, will be important.

Charge correlationsbetween two rods also depend \here the discrete Fourier transformiof(k,.r ) is denoted
strongly on rod separation. Note that the rods are placed gg
nonzero distance apart and are discrete from each other, so

we do not need to extend Debye-tkel theory as in Sec. II WN-1
in order to obtain oscillatory inter-rod correlations. To study Ko(lk,.k, )= > Ko(lk,alj,[)cogk, j,a), (25
these, we construct the functid®,5(R,z—z2'), which de- Ixly=0

scribes correlations between a monomez ah one rod with
a monomer at' on the other rod. We find wherej, =(jx.jy) andjy,j,=0,1,... yN—1. By conven-
tion, Ko(kzalj, =0[) = Ko(k.b).
We now use Eq(24) to study the correlations between
[A" g7 Y(k,) +2&K(kb)]? charges at the same heignhti.e., s=s’), but on different
2EK o(KR) +28Ko(kR). rods within the bundle. Because the rods are placed on a
(23)  discrete lattice, we do not have to extend Debyeskdl
theory, as in Sec. Il, to obtain oscillatory decay. In our nu-
merical calculations, we have studied a>x322 bundle of
Note thatG,,(R,k,) is negative for allk,, which implies rods consisting oM = 10" monomers each, on a square lat-
Gi1R,z—2z'=0)<0. In other words, the charge on one rod tice with a lattice spacing ch=15 A. We have chosen a
at positionz is anticorrelated with the charge on the other rodManning parameter o§=4.176, a charge variance f
at positionz. This is the origin of the attraction between the =1.761, and a monomer length bf=1.7 A (these are pa-
two rods. rameters characteristic of DNA at room temperatufEo
Finally, we consider charge correlations in a squareavoid singularities in thek, integration, we integrate from
bundle of parallel rods running in thedirection on a square k,= /L to «/b, rather thark,=0 to . Since we are ex-
lattice of lattice constand. To calculate the charge correla- amining correlations in thay plane, however, the function
tions, we impose periodic boundary conditions on the bundleok,(s—s') is set to unity, and th&, integration is not sen-
in the x andy directions, and introduce the discrete Fouriersitive to the numerical values of the upper and lower cutoffs.
transform in thexy plane. The allowed values for the wave The resulting correlation functio®(r, —r|) (solid line) is
vectork, , which is conjugate to the positian =(x,y), are  plotted in Fig. 4 as a function of the separation between the
then given byk, =(2#/ \/N)(nx,ny) wheren,,n, can as- rods in units of the lattice spacinfg, —r|/a. Evidently, the
sume the values 0,1. . ,/N—1. The connected charge cor- charge correlation function exhibits oscillatory decay, with
relation function is an oscillation wavelength that is comparable to the lattice

Gz (Rk)=—
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spacing. Adjacent rods are anticorrelated. This result showsame in spirit, and represents a momentum-space version of
that the correlations extend over many rods. their real-space theory when the discrete nature of the
We can calculate the same quantity within a perturbatiorcharges is included. We have shown that our approach yields
expansion in powers of the Manning parameferlf the  qualitatively identical results to earlier calculations of charge
expansion is truncated at lowest nonvanishing order, then theorrelations in electrolytes.
effective interactions between rods are pairwise addfije The main advantage of our approach is that it can be
At this order, however, the correlation function decaysapplied easily to other problems. In particular, we are inter-
monotonically; we findG(r, —r|)=—¢A?|r, —r|| forr,  ested in charge correlations in a bundle of like-charged rods
#r| . This result is plotted as a dotted line in Fig. 4. Not that are held together by counterion-mediated attractions. In

only does the truncated theory predict monotonic instead ofur picture, condensed counterions give rise to charge fluc-
oscillatory decay, but it also predicts that the magnitude otuations along the rods. The attraction arises from correla-
the charge correlation function is much too high compared tdions of the charge fluctuations on different rods. Earlier, we
the exact resulfsolid line). This is consistent with our earlier showed that many-body effective interactions among rods
finding for the two-rod case, where the truncated expressiof’® extremely important to this systesi; pairwise summa-
predicts a much stronger and much |0nger-ranged attractidfripn of the effective interactions leads to a preferred bundle
than the full serie$6]. The truncated theory fails because it Size that is finite, while explicit calculatiofincluding many-

is pairwise additive and neglects many-rod interactions. Th&ody interactions predicts that the preferred bundle size is
charge fluctuations on the rods are correlated over manipfinite. Here, we have shown that the very terms in the free
rods, not just pair by pair. This leads to a more effectiveenergy that give rise to these many-body interactions are also

screening and a lower free energy for a large bundle. required in order to obtain oscillatory charge correlations.
These oscillations are a precursor to the ionic crystal, which
IV. DISCUSSION one would expect to be infinite. Thus our result yields insight

into the physical reason why electrostatics prefer an infinite
In this paper we have presented an extension of théundle size.
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