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Charge oscillations and many-body effects in bundles of like-charged rods

B.-Y. Ha and Andrea J. Liu
Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095

~Received 7 July 1998!

We study charge correlations in bundles of like-charged rods that attract each other via counterion-mediated
interactions, using a Debye-Hu¨ckel approach. We first show that the approach can predict oscillatory charge
correlations in electrolyte solutions once the nonzero ion size is taken into account. We then apply the
approach to bundles of rods, and find that the charge correlation function exhibits oscillatory decay due to
many-body effective interactions among the rods.@S1063-651X~98!12511-4#

PACS number~s!: 61.20.Qg, 61.25.Hq, 87.15.Da
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I. INTRODUCTION

Like-charged stiff polyelectrolytes can attract each ot
in solution to form dense bundles when multivalent salts
added@1,2#. Recent simulations@3,4# and theories@5,3,6,7#
of charged rods suggest that the mechanism of the sh
ranged attraction is similar to the van der Waals attracti
fluctuations in the density of condensed counterions al
the axes of the rods lead to charge fluctuations that bec
correlated when the rods are sufficiently close to each ot
In addition, rods are affected by a long-ranged repulsion
to the fact that they carry the same sign of charge. If
interactions were pairwise additive, this would imply that t
bundle size would be limited by the long-ranged repulsi
However, these interactions are not pairwise additive@7,8#.
Explicit calculation@8# of the interactions inN-rod bundles
shows that electrostatics prefer the bundle size to be infin
At very low temperatures, this is not surprising because
system orders into an ionic crystal@3#, and electrostatics do
not limit the size of an ionic crystal. At the temperatures
have studied, however, the counterions are not ordered
odically, so it is less clear why electrostatics should prefer
infinite bundle size. By studying charge correlations in t
bundle, we can gain insight into the result that the prefer
bundle size is infinite. Another benefit is that we can ma
connection to experiments: charge correlations can be m
sured by x-ray scattering from the counterions.

In this paper we present a formulation that allows cal
lation of charge correlations in a bundle of like-charged ro
with condensed counterions. We find that both the intra
and inter-rod charge correlations are oscillatory within
exponentially decaying envelope. These oscillations can
viewed as a precursor to the ionic crystal; as the tempera
is lowered, the exponential decay length diverges at the t
sition to an ionic crystal. We find that the oscillations exte
over several rods, which explains why many-body effects
so important in this system.

In order to calculate the attractive interactions betwe
rods and the corresponding charge correlations, we us
extension of Debye-Hu¨ckel theory. It is well known that
standard Debye-Hu¨ckel theory fails to describe the attra
tions necessary to the formation of bundles. In fact, even
nonlinear Poisson-Boltzmann equation predicts repulsi
for multivalent as well as monovalent counterions@9#. How-
ever, the Manning-Oosawa approach to counterion cond
PRE 581063-651X/98/58~5!/6281~6!/$15.00
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sation allows the counterion to exist in two states: free
condensed. Condensed counterions modify the local ch
while free counterions are treated within Debye-Hu¨ckel
theory. There is chemical equilibrium between free and c
densed counterions; this leads to fluctuations in the cha
density along the rods. Our approach to this model is to
one-dimensional Debye-Hu¨ckel theory to treat the charg
fluctuations along the rods@8#. The one-dimensional Debye
Hückel system on each rod is coupled via a thre
dimensional Debye-Hu¨ckel system of free counterions an
added salt ions to the one-dimensional Debye-Hu¨ckel sys-
tems on the other rods in the bundle. We have shown
this approach describes the interaction between two rods
quantitative level when compared to simulations@6#. Here,
we show that this approach predictsoscillatory decay of the
inter-rod charge correlations. However, we must extend it
capture the proper oscillatoryintrarod correlations. Re-
cently, Lee and Fisher@10# generalized Debye-Hu¨ckel theory
to capture oscillatory charge correlations in electrolyte so
tions. Their approach, however, cannot be applied readil
the case of a bundle of rods with one-dimensional cha
fluctuations. We have therefore adopted an alternate
proach that is more amenable to rods. In Sec. II we introd
the approach and demonstrate its validity by applying it to
electrolyte solution consisting of positively and negative
charged spheres. In qualitative agreement with recent res
of Lee and Fisher@10#, we find that the charge correlation
are oscillatory at sufficiently high densities within an exp
nentially decaying envelope. At very high densities, we a
observe a transition to an ionic crystal, although the theor
certainly not accurate by that point.

In Sec. III we apply the same approach to a bundle of ro
with charge fluctuations. The specific system we have
mind is a polyelectrolyte with condensed counterio
@11,12#, where the charge fluctuations originate from dens
fluctuations in the condensed counterions along the axe
the rods@13#. In the bundle, we consider both inter-rod an
intrarod charge correlations, and show that the correlati
are again oscillatory with an exponential decay. The osci
tions are a precursor to the ionic crystal at low temperatu
where the exponential decay length diverges. We also s
that pairwise additivity of effective two-rod interactions~me-
diated by the counterions! leads to monotonic decay of th
inter-rod charge correlation function. Thus many-body int
6281 © 1998 The American Physical Society
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6282 PRE 58B.-Y. HA AND ANDREA J. LIU
actions must be retained in order for the inter-rod corre
tions to be oscillatory.

II. CHARGE CORRELATIONS IN AN ELECTROLYTE
SOLUTION

The conventional Debye-Hu¨ckel approach predicts mono
tonic decay of charge correlations. However, Lee and Fis
@10# have proposed a generalization of Debye-Hu¨ckel theory
that predicts oscillatory correlations at high densities, by c
culating the response to spatially varying fluctuations in
charge density. Here, we develop the momentum-sp
counterpart to their approach and show that it yields qua
tively similar results. We start with the restricted primitiv
model~RPM! of hard spheres of diameterd. We assume tha
there areN spheres carrying chargeqe andN spheres carry-
ing charge2qe. To calculate the free energy of the syste
we define local number densities of the positively and ne
tively charged spheres as follows:

n̂1~r !5(
i 1

N

d~r2r i 1!,

n̂2~r !5(
i 2

N

d~r2r i 2!, ~1!

and the local charge density is

r~r !5qn̂1~r !2qn̂2~r !. ~2!

The electrostatic Hamiltonian is

bHel5
1

2
l BE d3r E d3r 8

r~r !r~r 8!

ur2r 8u
, ~3!

where l B5e2/ekBT is the Bjerrum length. Here,e is the
dielectric constant of the solvent. There is also a single p
ticle HamiltonianH0 that ensures that ions are correlat
into a sphere of diameterd. This is infinite for points outside
the sphere and zero for points inside the sphere. We
introduce the Hubbard-Stratanovich transformation to
place the two-body interaction, Eq.~3!, with a one-body in-
teraction of the charge in an effective fieldF(r ), and use the
Gaussian approximation to obtain the free energy. T
Gaussian approximation corresponds to Debye-Hu¨ckel
theory in that the effective potential due to all the other p
ticles is assumed to be weak compared to the thermal ene
The resulting free energy density forpoint particles is ex-
actly the Debye-Hu¨ckel limiting law:

bFel52kD
3 /12p, ~4!

where kD
2 54pl Bq2n0 is the Debye screening paramet

that depends on the total number density of ionsn0 . For
spheres of diameterd, the electrostatic contribution to th
free energy~per unit volume! is given within the same ap
proach@15# by

bFel5
1

2E d3k

~2p!3F lnS 11
k2~k!

k2 D 2
k2~k!

k2 G , ~5!
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where

k2~k!5kD
2 g~k!, ~6!

whereg(k)53(sinkd2kdcoskd)/(kd)3 is the form factor of a
sphere of diameterd. We will refer to this as extended
Debye-Hückel theory.

To examine charge correlations, we apply an electrost
potential 2 ih(r ) that is conjugate to the charge dens
r(r ), so that the free energy is

bF@h#52 lnK expF i E d3rr~r !h~r !G L . ~7!

Then the Fourier transform of the charge correlation funct
is

G~k![^r~k!r~k!&52
]2F@h#

]h~k!]h~2k!
. ~8!

The resulting expression within the extended Debye-Hu¨ckel
approach is

G~k!5
n0k2g~k!

k21k2~k!
, ~9!

with k2(k) given by Eq.~6!. Note that in the limit of point
particles@d→0 or g(k)→1], the expression reduces to th
Fourier transform of the usual Debye-Hu¨ckel prediction,
which decays monotonically with distance. Note also that
expression Eq.~9! automatically satisfies both the charg
neutrality zero moment condition and the Stillinger-Love
second moment condition@16#. This can be seen by expand
ing the expression for smallk @10#:

G~k!5~ekBT/4pq2e2!k21O~k4!. ~10!

In order to analyze the asymptotic long-distance behav
of the charge correlation function, we find the polek0 of
G(k) that is closest to the origin in the complexk plane. For
small values ofx5kDd, we find that the charge correlation
decay monotonically, but forx.xK , we obtain oscillatory
decay. Our estimate of the Kirkwood value is

xK'2.06. ~11!

This is substantially larger than the predictions of other
proaches@10#, which lie in the range 1.0,xK,1.3. The be-
havior of k0 as a function ofx5kDd, however, is qualita-
tively identical to that predicted by Lee and Fisher@10#. We
have plotted the results in Fig. 1, which should be compa
to Fig. 1 of Ref. @10#. For x.xK , the charge correlation
function oscillates within an exponentially decaying env
lope. The real part ofk0 , which controls the wavelength o
oscillations, is shown as a solid line, while the imagina
part, which controls the decay, is a dotted line. Asx in-
creases, the wavelength of the oscillation decreases and
decay length increases. Atx5xX , the imaginary part van-
ishes and the decay length diverges, signalling the onse
crystallization. Our estimate of the onset isxX519.1, which
is also outside the expected range of 2.8,xX,17.7 obtained
by other methods@10#. We have neglected ion clustering, s
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PRE 58 6283CHARGE OSCILLATIONS AND MANY-BODY EFFECTS . . .
the theory is certainly not valid at such high values ofx.
However, it is reassuring that our approximations lead
qualitatively correct behavior.

There are several possible reasons for the discrepanc
tween earlier results and our numerical predictions forxK
andxX . Perhaps the most important one is that we do not
off the electrostatic interactions at length scales inside
sphere. This can be done in an approximate way by introd
ing a high wave-vector cutoff atL5p/d in the integral in
Eq. ~5!, but the resulting expression forG(k) will then be
more complicated. Since we are not trying to obtain a qu
titatively accurate description of the electrolyte, we will n
attempt to improve on the estimate here. Rather, our aim
develop an approach that can be generalized to a bund
rods. The main point of this section is that we can capt
oscillatory charge correlations by taking into account
nonzero size of the ions via the form factorg(k).

III. CHARGE CORRELATIONS IN A BUNDLE
OF POLYELECTROLYTE RODS

We consider a model ofN parallel rods of lengthL
aligned in thez direction, organized on a square lattice
spacinga. The counterions have diameterd. Each rod con-
sists of M cylindrical monomers of lengthb5L/M . Each
monomers on rod j carries a random chargeqj (s), in units
of the elementary chargee. The electrostatic interactions ar

bH5
1

2
l B(

i j

N

(
ss8

M
qi~s!qj~s8!

ur i~s!2r j~s8!u
. ~12!

FIG. 1. The leading polek0 for an electrolyte solution of sphere
of diameter d, as a function of the dimensionless quantityx
5kDd. The behavior is qualitatively the same as predicted by L
and Fisher@10#. The real part ofk0 ~solid line! characterizes oscil-
lations in the charge correlation function, while the imaginary p
~dashed line! controls the decay. AtxK , marked by the dotted ver
tical line on the left, the correlation function becomes oscillato
At xX , marked by the vertical dotted line on the right, the syst
crystallizes. Note that our figure looks somewhat different from
one in Ref.@12# because we have only plotted the leading po
while Lee and Fisher have also sometimes plotted the sublea
pole.
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Following the same approach as in the preceding section
introduce an electrostatic potential2 ih(r ) that is conjugate
to the charge densityr(r ), so that the free energy is

F@hi~s!#52 lnK expH 2 i (
j 51

N

(
s51

M

qj~s!hj~s!J L . ~13!

Again, we make the Hubbard-Stratanovich transformat
and truncate at Gaussian level@6,8#. This corresponds to
treating the one-dimensional charge fluctuations on each
within Debye-Hückel theory. The connected charge corre
tion function is then given by

Gi j ~s,s8!5^qi~s!qj~s8!&2^qi~s!&^qj~s8!&

52
]2F@hi~s!#

]hi~s!]hj~s!
U
$hi ~s!%50

5Qi j
21~s,s8!, ~14!

where Q is a block matrix whose matrix elementQi j is a
submatrix defined by

Qi j ~s,s8!5D21d i j dss81
l B

ARi j
2 1us2s8u2

, ~15!

whereRi j is the separation between rodsi and j. As in our
previous calculations@8#, the quantityD5Z2f c is the vari-
ance in the monomeric charge, whereZ is the counterion
valency andf c is the fraction of condensed counterions p
monomer. Note that charges at different sites are unco
lated in the absence of electrostatic interactions:Gi j (s,s8)
5Dd i j dss8 for l B50 @17#. Once electrostatic interaction
are turned on, however, charges on different sites are co
lated via the electrostatic interactionl B /ARi j

2 1us2s8u2.
The expression for the charge correlation function, E

~15!, could be evaluated numerically for a given rod leng
and lattice spacing. In order to obtain analytic expressi
for the charge correlations, however, it is useful to take
continuum limit along thez direction. The straightforward
limit of replacing the sums overs ands8 by integrals and the
Kronecker delta functiondss8 by the Dirac delta function in
Eq. ~15! is analogous to the point-particle limit in the Deby
Hückel treatment of an electrolyte solution, and neglects
portant local correlations. We therefore retain the rodl
structure of the monomer by introducing the on
dimensional form factorg(s,s8)5Q(us2s8u2d)/d whered
is the size of the condensed counterions@18#. This is directly
analogous to the sphere form factor that appears in Eq.~6!.
Once we have allowed for this short length-scale structu
we take the continuum limit ons and obtain

Gi j ~s,s8!5E
0

L

ds9g~s,s9!Qi j
21~s9,s8!, ~16!

where

Qi j ~s,s8!5D21d i j d~s,s8!1l BE
0

L

ds9
g~s,s9!

ARi j
2 1us92s8u2

.

~17!
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6284 PRE 58B.-Y. HA AND ANDREA J. LIU
In the limit L→`, we can introduce the Fourier transform
the z direction:

Gi j ~s,s8!5E
2`

` dkz

2p
coskz~s2s8!Q i j

21~kz!, ~18!

where

Qi j ~kz!5D21g21~kz!d i j 12jK0~kzRi j !, ~19!

where the dimensionless parameterj5l B /b is the Manning
parameter,g(kz)5sinkzd/kzd is the Fourier transform o
g(z), andK0(x) is the zeroth-order modified Bessel functio
of the second kind. In the case of two monomers on the s
rod, wherei 5 j , we setRii 5b to prevent a divergence whe
s5s8.

Given the general form of the correlation function in E
~18!, we can now examine its behavior in various limits. W
first consider charge correlations along the length of a sin
isolated rod. In that limit, the lattice spacinga diverges, so
that Ri j→` in Eq. ~19! unlessi 5 j , and Eq.~18! reduces to

G21~kz!5D21g21~kz!12jK0~kzb!. ~20!

To obtain the asymptotic largez behavior of the correlation
function, we extract the polek0 of G(kz) that lies closest to
the origin in the complexkz plane. This is plotted in Fig. 2 a
a function ofx5ZAj. As in the three-dimensional case,x
increases as the temperature is lowered or the charge de
along the rod increases. In our numerical calculations,
have chosen parameters consistent with our prev
work:@6,8# Z52, b51.7 Å, andd54.2 Å. The real part of
k0 is shown as a solid curve, and the imaginary part a
dotted curve. The real part controls the wavelength of
oscillations in the charge correlation function; thus the os
lation wavelength decreases asx increases. The imaginar

FIG. 2. The leading polek0 for charge correlations along
single rod, as a function ofx5ZAj, wherej5l B /b is the Man-
ning parameter andZ52 is the counterion valency. We have a
sumedb51.7 Å andd54.2 Å. The real part ofk0 ~solid! controls
the oscillations and the imaginary part ofk0 ~dashed! controls the
decay of the charge correlations. The onset of counterion con
sation is atxC5A2 and is marked by the vertical dotted line on t
left. The onset of crystallization is atxX and is marked by the dotte
line on the right.
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part of k0 is the inverse of the exponential decay length
the correlation function; this vanishes atx5xX55.4, signal-
ling the onset of long-range order@19#.

Comparing Fig. 2 to Fig. 1, we see that the behavior
qualitatively different at smallx. In the d53 system,k0 is
purely imaginary and correlations decay monotonically
small x. One might also expect correlations to decay mon
tonically in thed51 case for smallx ~high temperatures o
low charge densities!. To elucidate the origin of this differ-
ence between thed51 andd53 cases, we have expande
the Fourier transform of Eq.~20! in powers of the Manning
parameterj5l B /b ~recall thatx5ZAj):

G~z,z8!>Ddzz82
jD2

Auz2z8u21b2
1

1

6
D3j2KS 2

uz2z8u2

4b2 D ,

~21!

whereK(x) is the complete elliptic integral of the first kind
According to the first few terms of the perturbation e

pansion, the charge correlations should decay algebraic
as 1/Az2z8, instead of exponentially, as predicted by t
full expression as shown in Fig. 2. If we take only the fir
two terms of the expansion, consistent with small values
x, we find a monotonic decay from below, similar to th
result for d53. However, the variance in the monomer
charge,D, is related to the amount of counterion conden
tion by D5Z2f c , where f c is the fraction of condensed
counterions per monomer. We findD50 for x,xC , where
xC5AZ is the counterion condensation threshold; this
identical to Manning’s result@11,12#. Therefore G(z,z8)
50 for x,xC . For x>xC , we find that the perturbation
expansion diverges, so Eq.~21! is not useful. This explains
why the one-dimensional case is so different from the thr
dimensional electrolyte solution: belowxC , there are no con-
densed counterions so the charge is uniformly negative
completely correlated (k050). Once some fraction of coun
terions have condensed (x.xC), they repel each other an
the correlation function exhibits oscillatory decay (Rek0
Þ0).

When two rods are brought together, the correlations
tween charges on a rod depend on the separation betwee
two rods. To study these correlations, we consider two p
allel rods separated by a distanceR, and studyG11(R,z
2z8), the correlation between a monomer atz on one rod
with a monomer atz8 on thesamerod. As before, we exam
ine the Fourier transform in thez direction

G11
21~R,kz!5D21g21~kz!12jK0~kzb!

2
@2jK0~kzR!#2

D21g21~kz!12jK0~kzb!
. ~22!

For large separationsz, this correlation function exhibits os
cillatory decay. The positionk0 of the pole ofG11(R,kz)
closest to the origin in the complexkz plane is plotted in Fig.
3 as a function ofb/R, whereR is the inter-rod spacing. Fo
this figure, we have chosenx5ZAj54.087. In the limitR
→`, k0 approaches its single-rod value. Asb/R increases,
however, the real part ofk0 increases, showing that th
wavelength of the oscillation decreases. In addition,
imaginary part ofk0 decreases, indicating that the correl

n-
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PRE 58 6285CHARGE OSCILLATIONS AND MANY-BODY EFFECTS . . .
tions in thez direction grow longer ranged as the spaci
between the rods decreases. When the two rods are
tremely close together atb/R'1, the imaginary part van
ishes, suggesting the onset of long-range order in thez direc-
tion. At this distance, however, effects that we ha
neglected, such as hard-core interactions, will be importa

Charge correlationsbetween two rods also depend
strongly on rod separation. Note that the rods are place
nonzero distance apart and are discrete from each othe
we do not need to extend Debye-Hu¨ckel theory as in Sec. II
in order to obtain oscillatory inter-rod correlations. To stu
these, we construct the functionG12(R,z2z8), which de-
scribes correlations between a monomer atz on one rod with
a monomer atz8 on the other rod. We find

G12
21~R,kz!52

@D21g21~kz!12jK0~kzb!#2

2jK0~kzR!
12jK0~kzR!.

~23!

Note thatG12(R,kz) is negative for allkz , which implies
G12(R,z2z850),0. In other words, the charge on one ro
at positionz is anticorrelated with the charge on the other r
at positionz. This is the origin of the attraction between th
two rods.

Finally, we consider charge correlations in a squ
bundle of parallel rods running in thez direction on a square
lattice of lattice constanta. To calculate the charge correla
tions, we impose periodic boundary conditions on the bun
in the x andy directions, and introduce the discrete Four
transform in thexy plane. The allowed values for the wav
vectork' , which is conjugate to the positionr'5(x,y) , are
then given byk'5(2p/AN)(nx ,ny) where nx ,ny can as-
sume the values 0,1, . . . ,AN21. The connected charge co
relation function is

FIG. 3. The leading polek0 for charge correlations along th
axis of one rod, as a function of the distanceR between the rod and
a second rod, in units of the monomer lengthb. Here, we have
chosenx5ZAj54.087 andD51.761. We have plotted the rea
~solid! and imaginary~dashed! parts of k0 as a function ofb/R.
Whenb/R→0, our result approaches the single-rod limit. When
two rods are extremely close together at a spacingRX ~marked by
the vertical dotted line!, the charges crystallize.
x-

t.

a
so

e

le
r

G~r'2r'8 ,s2s8!

5
1

N(
k'

E
2`

` dkz

2p

cos@kz~s2s8!1k'•~r'2r'8 !#

D21g21~kz!12jK0~kz ,k'!
,

~24!

where the discrete Fourier transform ofK0(kz ,r') is denoted
as

K0~ ukzu,k'!5 (
j xj y50

AN21

K0~ ukzuau j'u!cos~k'• j'a!, ~25!

where j'5( j x , j y) and j x , j y50,1, . . . ,AN21. By conven-
tion, K0(kzau j'50u)5K0(kzb).

We now use Eq.~24! to study the correlations betwee
charges at the same heightz ~i.e., s5s8), but on different
rods within the bundle. Because the rods are placed o
discrete lattice, we do not have to extend Debye-Hu¨ckel
theory, as in Sec. II, to obtain oscillatory decay. In our n
merical calculations, we have studied a 32332 bundle of
rods consisting ofM5104 monomers each, on a square la
tice with a lattice spacing ofa515 Å. We have chosen a
Manning parameter ofj54.176, a charge variance ofD
51.761, and a monomer length ofb51.7 Å ~these are pa-
rameters characteristic of DNA at room temperature!. To
avoid singularities in thekz integration, we integrate from
kz5p/L to p/b, rather thankz50 to `. Since we are ex-
amining correlations in thexy plane, however, the function
coskz(s2s8) is set to unity, and thekz integration is not sen-
sitive to the numerical values of the upper and lower cuto
The resulting correlation functionG(r'2r'8 ) ~solid line! is
plotted in Fig. 4 as a function of the separation between
rods in units of the lattice spacing,ur'2r'8 u/a. Evidently, the
charge correlation function exhibits oscillatory decay, w
an oscillation wavelength that is comparable to the latt

FIG. 4. The charge correlation function~diamonds! in the xy
plane for a square bundle of 32332 rods as a function ofur'

2r'8 u, in units of the lattice spacinga, at x5ZAj54.087 andD
51.761. The solid line is to guide the eye. Note that adjacent r
are anticorrelated and that the correlation function extends o
many ~approximately 12! rods. The charge correlation functio
within the truncated~pairwise-additive! theory is also shown as a
dotted line. Note that it is monotonic.
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6286 PRE 58B.-Y. HA AND ANDREA J. LIU
spacing. Adjacent rods are anticorrelated. This result sh
that the correlations extend over many rods.

We can calculate the same quantity within a perturbat
expansion in powers of the Manning parameterj. If the
expansion is truncated at lowest nonvanishing order, then
effective interactions between rods are pairwise additive@8#.
At this order, however, the correlation function deca
monotonically; we findG(r'2r'8 )>2jD2/ur'2r'8 u for r'

Þr'8 . This result is plotted as a dotted line in Fig. 4. N
only does the truncated theory predict monotonic instead
oscillatory decay, but it also predicts that the magnitude
the charge correlation function is much too high compared
the exact result~solid line!. This is consistent with our earlie
finding for the two-rod case, where the truncated express
predicts a much stronger and much longer-ranged attrac
than the full series@6#. The truncated theory fails because
is pairwise additive and neglects many-rod interactions. T
charge fluctuations on the rods are correlated over m
rods, not just pair by pair. This leads to a more effect
screening and a lower free energy for a large bundle.

IV. DISCUSSION

In this paper we have presented an extension of
Debye-Hückel approach that allows calculation of char
correlation functions in electrostatic systems. The Deb
Hückel approach yields monotonically decaying correlatio
unless the discrete nature of the charges is explicitly
cluded. Recently, Lee and Fisher@10# showed that by calcu
lating the response to an oscillatory charge density wit
Debye-Hückel theory, one can obtain oscillatory decay of t
correlation function. The random phase approximation is
g
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same in spirit, and represents a momentum-space versio
their real-space theory when the discrete nature of
charges is included. We have shown that our approach yi
qualitatively identical results to earlier calculations of char
correlations in electrolytes.

The main advantage of our approach is that it can
applied easily to other problems. In particular, we are int
ested in charge correlations in a bundle of like-charged r
that are held together by counterion-mediated attractions
our picture, condensed counterions give rise to charge fl
tuations along the rods. The attraction arises from corre
tions of the charge fluctuations on different rods. Earlier,
showed that many-body effective interactions among r
are extremely important to this system@8#; pairwise summa-
tion of the effective interactions leads to a preferred bun
size that is finite, while explicit calculation~including many-
body interactions! predicts that the preferred bundle size
infinite. Here, we have shown that the very terms in the f
energy that give rise to these many-body interactions are
required in order to obtain oscillatory charge correlatio
These oscillations are a precursor to the ionic crystal, wh
one would expect to be infinite. Thus our result yields insig
into the physical reason why electrostatics prefer an infin
bundle size.
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